
Chapter 4

Interface for User Control Functions

4.1 Introduction

The previous chapter introduced the user interface to the circuit simulator. In particular, the

simulation parameter spreadsheet circuit inputs.csv was described and it was shown how a

row was devoted to specifying the control functions in the simulation. In the previous chapter,

the data structure of each type of circuit component was described in the form of tables. The

components that could be controlled were described to have ControlTags with control values

that can be modified by user defined control functions. This chapter is completely devoted

to user-defined control functions. The word controller and control code will be used for any

code that the user wants to implement in the circuit simulation. As already stated before,

it is not necessary that this control code be performing a control action and for that matter

there need not be a controllable component in the circuit. This control code could be merely

a processing tool used by the user in real-time as the simulation progresses such as calculating

efficiency, harmonic content, root mean square values etc.

The prime target of the circuit simulator is to simulate circuits with multiple power elec-

tronic converters. Therefore, including control functions in a simulation must be convenient

to the user as the user may need to design control functions for a number of a converters.

This chapter will describe how each control function has a descriptor which defines not only

the input-output map of the control function but also defines special variables for the control

function. The chapter will describe the need to define special variables and how the user

can use them particularly when cascaded or embedded control functions need to be designed.

73

74 CHAPTER 4. INTERFACE FOR USER CONTROL FUNCTIONS

In addition, the chapter will also discuss the concept of time scheduling of control events

and also how the circuit simulator can ensure that every control code will run at exactly the

intended time instant even when the time step of the controller can be very different from

the simulation time step.

This chapter primarily intends to show how the control interface with this circuit simulator

is about as effective and easy to use as the control interfaces available with most commercial

software. This chapter describes how multiple control functions can be incorporated in a

single simulation and how the simulator enables connectivity between control functions. The

objective of designing the control interface in this manner is to replicate the implementation

of control algorithms on micro-controllers in hardware. In the future, the option might be

provided to design control with a particular hardware architecture to decrease the time for

implementing the final hardware.

4.2 Inclusion of control in the simulator

Chapter 3 described the user interface for designing the circuit and specifying simulation

parameters. As was mentioned, the spreadsheet circuit inputs.csv specified the simulation

parameters - circuit schematic spreadsheets, simulation time step and time duration of simu-

lation. There is also another row for control files. If this row is left blank, the simulator will

not process any control files. If the user wishes to specify control files, the user can specify

any number of control files in separate cells in that same row. Table 4.1 is an example of how

Table 4.1: Control files in circuit inputs.csv

Name of control files control1.py control2.py

two control files control1.py and control2.py can be specified by the user in circuit inputs.csv.

There is no limit to the number of control files that can be included in a simulation. At the

time of writing this book, control can be implemented as Python 2 code and the control files

have to listed as .py files. Specifying a control file that does not exist is an error and the

simulator will abort with an error message.

The simulator deals with user control files in a manner that is described by the following

block diagram. The user writes code as a .py file. The control code written by the user are

4.2. INCLUSION OF CONTROL IN THE SIMULATOR 75

control1.py

control2.py

controlN.py

control1func(. . .)

control2func(. . .)

controlNfunc(. . .)

<Control1 code >

<Control2 code >

<ControlN code >

return

return

return

control.py

Figure 4.1: Inclusion of control functions in the simulator

shown as files Control1.py, Control2.py to ControlN.py on the left. Each such control file is

inserted into a function by the simulator. This is shown on the right. Control1.py is inserted

into the function Control1 func, Control2.py is inserted into the function Control2 func and

so on. Essentially the function which contains a user control file has “ func” appended to the

name of the control file. This enables the simulator to execute the control files by evaluating

the functions. Since there can be multiple control files in a simulation, the code in each

control file will be inserted into a separate function by the simulator. All these functions will

in turn be inserted into the file control.py. Therefore, the user cannot name a control file

by this name. The simulator will import the file control.py thereby gaining access to all the

member functions within it which are the functions containing user control code.

In most commercial software, a controller is usually a block with input and output ports.

In a similar manner it becomes necessary to describe the port connections with this circuit

simulator. This is done by a descriptor spreadsheet. When the user wishes to implement a

controller, all the user needs to do at the beginning is name the file - for example, let us call

a control file by user control.py. When the circuit simulator is notified of the control file in

circuit inputs.csv, the simulator will look if a descriptor exists for such a file. Any control

file will have a corresponding descriptor spreadsheet with desc.csv appended to the name -

for example, for a control file user control.py, the descriptor file will be user control desc.csv.

When the user specifies a new control file, a blank descriptor spreadsheet with default input

and output will be created by the simulator. The flowchart in Fig. 4.2 describes the process.

76 CHAPTER 4. INTERFACE FOR USER CONTROL FUNCTIONS

Read control files

in circuit inputs.csv

Every

control file

has descriptor

?

Launch simulator

Create sample descriptor

for every control file

Ask the user

to confirm every descriptor

Read descriptors

Y

N

Figure 4.2: Descriptor for control functions

When the simulator finds a descriptor file, it will use that file to read the latest parameters

of each control file. We will now look at the concept of how a control file is handled by the

simulator with the following basic example with a single input and single output.

The inputs to the controller are usually meter outputs - ammeter and/or voltmeter. The

later section will describe how a controller could be interfaced with another one. The circuit

simulator will create a single entry in any new control descriptor file with the structure shown

in Table 4.2. These three fields of an input port will be present in a row of any descriptor

Table 4.2: Descriptor entry for control input

Input Element name in circuit

spreadsheet = Ammeter A1

Desired variable name in con-

trol code = curr input

spreadsheet the simulator creates by default. The first column “Input” is to let the user know

that the row corresponds to an input port to the controller. The second column is the meter

which serves as the input to the control code. This has to be equal to the component which

is the meter. Notice that the entire component as it appears in the spreadsheet should be

specified. The third column is for the user to specify how the user wants to access this input

in the control code. For the above example, the user can access the measured current output

of Ammeter A1 by the variable curr input in the control code user control.py. The simulator

4.2. INCLUSION OF CONTROL IN THE SIMULATOR 77

will copy the current output of Ammeter A1 to the variable curr input and then execute the

control code. This variable name is up to the user and can be anything as long as it is a

legal variable name and also should be unique within the control code - i.e it should not be

used for another input or output port or any other variable to avoid corruption of data. The

circuit simulator will create only one such row above and will extract a meter at random

from the circuit. The user can have multiple inputs by adding rows similar to the one above

and adding more meters. There is no limit to the number of inputs there are in a control

descriptor spreadsheet. The simulator determines a row to be an input port when the first

column is “Input”.

The next port to be described is the Output port. A row in the descriptor spreadsheet

corresponding to an Output port will be as shown in Table 4.3. The first two columns are

Table 4.3: Descriptor entry for control output

Output Element name in

circuit spread-

sheet = Con-

trolledVoltage-

Source Vin

Control tag de-

fined in param-

eters spreadsheet

= Vsource

Desired variable

name in control

code = Vsource

Initial output

value = 0

similar to the Input port. The word “Output” in the first column tells the simulator that

the row corresponds to an output port. The second column is the name of the controllable

component. In this example, a ControllableVoltageSource Vin has been used. The simulator

will look for a controllable component in the circuit, and if one is found will insert that into

the descriptor spreadsheet as an example for the user to add others. The simulator will insert

only one controllable component and this is chosen randomly. The third column is the control

tag of the controllable component. At this point, the reader should refer to Chapter 3 where

the ControllableVoltageSource component type is described. Any controllable component

type has a parameter called ControlTags. This is a parameter of the component type that

can be changed by the user in the parameters descriptor spreadsheet. To begin with this

parameter is a list because a controllable component could accept multiple control signals.

In the case of the ControllableVoltageSource, the list has only one parameter and that is the

desired output voltage of the source. Therefore, ControlTags by default would be [“Voltage”].

78 CHAPTER 4. INTERFACE FOR USER CONTROL FUNCTIONS

This is the default name given by the simulator to the control input of the component of type

ControlledVoltageSource in the parameter spreadsheet. As stated in Chapter 3, it is always

recommended to change the name of the inputs in ControlTags to something unique and eas-

ily identifiable. Let us then, rename the control input to Vsource. This renaming is not done

in the control descriptor spreadsheet. It is done in the parameter spreadsheet corresponding

to the circuit as the name of the control input is a parameter of the component Control-

lableVoltageSource Vin. In the control descriptor spreadsheet, the simulator automatically

extracts one of the items in the parameter ControlTags from the component object Control-

lableVoltageSource Vin and inserts it into the third column as shown in Table 4.3. It should

be noted that in case a component does have multiple control inputs and ControlTags is a list

with multiple entries, the entries would have to be made in separate rows of the descriptor

spreadsheet. A single row of a descriptor spreadsheet will only connect a single control input

of a controllable component to a variable inside the control code. The simulator will only

extract one control tag of a controllable component to serve as an example to the user. The

fourth column will ask for the name of the variable that the user wishes to refer to the control

input by. In the above example, it has been used as Vsource. Therefore, any value assigned

to the variable Vsource in the control code will automatically be transferred to the Vsource

ControlTag in ControllableVoltageSource Vin. The last column is an initial value. This will

be the value of the output when the simulation starts.

Input

Output

Ammeter A1

ControlledVoltageSource Vin

curr input

Vsource

curr input = X.Output

Vsource = Y.Vsource

<control1.py code >

Y.Vsource = Vsource

contol1 desc.csv

control1.py descriptor

control1 func

control.py

Figure 4.3: Input and output ports in a control function

The block diagram of Fig. 4.3 describes how the simulator uses the control descriptor

spreadsheet. Let us consider a user file Control1.py. This control file will have the descriptor

spreadsheet Control1 desc.csv. If it exists, the simulator will read the parameters of the

control file and if it doesn’t exist, the simulator will create a blank spreadsheet for the user

4.2. INCLUSION OF CONTROL IN THE SIMULATOR 79

to change. On the right is the function Control1 func into which the control code within

Control1.py is inserted by the simulator. Let us consider the basic example above of a single

Input port and a single Output port. On the right, it is shown how the Input and Output

ports are made available to the user. The example above considers an Input port which is

fed by an Ammeter A1 and the variable by which the user can access the Ammeter measured

current is through the variable curr input. The simulator assigns the variable curr input to

the current output of the Ammeter A1 inside the function Control1 func before the user code

with the statement:

cu r r i npu t = X. Output

Here X is the component object corresponding to the Ammeter A1. This concept has been

explained in Chapter 3. Each component in the circuit is an object created by instantiating a

class of that component type. Therefore, in the above statement, X is the object created by

instantiating a class of the Ammeter type for the component Ammeter A1. Chapter 3 has the

details of how this is done. What needs to be emphasised here is that the simulator automat-

ically extracts the measured output of Ammeter A1 by accessing the object corresponding

to Ammeter A1 and assigning it to curr input. Therefore, the subsequent user control code

which uses curr input now contains the measured current of Ammeter A1.

In a similar manner, the output is also interfaced. The only difference being that Output

ports are interfaced twice - before the user control code and after the user control code. The

variable Vsource is made available to the user to access the ControlTag Vsource of Control-

lableVoltageSource Vin. The user control code will therefore change the variable Vsource

within control code using any set of statements. This variable Vsource will directly alter the

ControlTag of the controllable component specified in the descriptor spreadsheet - in this

case, the ControlTag is Vsource. This is done using the last statement:

Y. Vsource = Vsource

In this case, Y is the object produced by instantiating the class ControllableVoltageSource for

the component ControllableVoltageSource Vin in the circuit. Therefore, any change in the

user variable Vsource will automatically be transferred to the controllable component. The

reverse statement is included before the control code in the function:

Vsource = Y. Vsource

80 CHAPTER 4. INTERFACE FOR USER CONTROL FUNCTIONS

This is to provide the user with the updated value of the ControlTag of the component in

case another control function also changes the value of the ControlTag.

4.3 Special variables in control code

As described in the previous section, any control code written by the user and specified

in simulation parameters spreadsheet circuit inputs.csv will be inserted into a function. So

control code in Control1.py will be inserted into the function Control1 func. All the control

functions will be written in the file control.py. By doing so, the file control.py can be

imported by the simulator and each control function can be executed using the “eval” function.

The previous section described how a basic controller can be designed with one input and

one output port. However, with just input and output ports and no other special function-

alities, only extremely simple controllers can be designed. As an example, the user can use

a number of variables for various mathematical operations. In Python, it is not necessary to

declare a variable. A variable comes into existence the first time it is used. However, in the

context of a function, a variable exists only within the function. The variable is created when

the function is called and is destroyed when the function is terminated. Any variable used by

the control code will not store its value between iterations and will always start with default

values. In some cases, this may be a problem. Consider the case of an integrator. The user

wishes to integrate the measured current curr input in the previous example. The expression

for that would be:

c u r r i n t e g = cu r r i n t e g + cu r r i npu t ∗dt

As is fairly obvious from the above equation, the integrator is based on storage. It adds

the new value curr input*dt to the stored value of the integrator - curr integ. If curr integ

is initialized to a default value (say zero) in the beginning of the control code, when the

function is executed at every iteration, it will always start at this default value and add only

the latest integrator input. This is not the desired operation of the integrator. The integrator

value should be initialized to a default value once in the beginning of the simulation and after

that should accumulate the latest integrator inputs. In order to do this, we need to store the

integrator output between iterations of the simulation. This can be done with StaticVariables.

A StaticVariable is a parameter of a controller. This implies it has to be defined in the

4.3. SPECIAL VARIABLES IN CONTROL CODE 81

Table 4.4: Descriptor entry for StaticVariables

StaticVariable Desired variable name in con-

trol code = curr integ

Initial value of variable = 0.0

control descriptor spreadsheet. Table 4.4 is a typical entry for a StaticVariable in a control

descriptor spreadsheet. As an example, let us consider the variable curr integ above. The

first column StaticVariable tells the simulator that the row describes the parameters of a

StaticVariable. The second column is the name of the variable the user wishes to use for

this static variable. In a manner similar to the Input and Output ports, the user can use

the defined StaticVariable in control code and the simulator will ensure that the latest value

of the StaticVariable is copied into it before the user code begins. The third column is the

initial value of the StaticVariable. The default is zero but it can be any finite number. Similar

to ports, a control code can have any number of StaticVariables. StaticVariables need to be

unique within a control code but they can be repeated in other control codes. The simulator

will keep StaticVariables in a control code separate from the StaticVariables in other control

code. Therefore, StaticVariables are local to a control code and cannot be used to share

data between controllers. It is recommended that a user declare the variables in user control

code as StaticVariables unless a variable is a constant or some other basic parameter which

is initialized at the beginning of the control code. In that case, the variable will be assigned

a value every time the user control function is evaluated.

StaticVariables within a user control function are dictionary items. In the above example

of the integrator, the StaticVariable curr integ is in a dictionary with another StaticVariable

pi output:

{ ‘ ‘ c u r r i n t e g ’ ’ : 0 , ‘ ‘ p i output ’ ’ : 0}

The keys of the dictionary are the names of the StaticVariable. This ensures that a StaticVari-

able within a file is unique as two keys in a dictionary cannot be identical. StaticVariables

need to be unique within a control function to prevent data corruption. However, identi-

cal control code can be present in different user control functions and this implies identical

StaticVariables in different user control functions. This functionality could be needed when

a circuit could have modular but identical blocks where each block is controlled by identi-

82 CHAPTER 4. INTERFACE FOR USER CONTROL FUNCTIONS

StaticVariable

StaticVariable Name = curr integ

Name = pi output Initial value = 0.0

Initial value = 0.0

curr integ = Static[“curr integ”]
pi output = Static[“pi output”]

<control1.py code >

Static[“curr integ”] = curr integ
Static[“pi output”] = pi output

contol1 desc.csv

control1.py descriptor

control1 func

control.py

Figure 4.4: StaticVariables in a control function

cal user control functions where the only difference may be the inputs and the outputs. To

achieve this, each user control function has its own StaticVariable dictionary. The dictionary

structure makes it convenient to insert the variables into the user control functions and also

to extract the updated values at the end of the control function as shown in the block diagram

of Fig. 4.4. Since the keys of the StaticVariable dictionary are the desired names of the Stat-

icVariables to be used in the control code, the assignments before and after the user control

code ensure that the latest values of the StaticVariables are passed back and forth between

the user control functions. These assignments are done automatically by the simulator in a

manner similar to the previous cases.

As stated before StaticVariables are defined for every user control function and the Stat-

icVariables defined for one are not accessible in another. In the previous section, Input and

Output ports for a control function were described. However, the input ports are typically

the measured values of meters like Ammeters and Voltmeters while the Output ports are

control signals to ControlTags of controllable component objects. However, at times, control

files need to be connected together - the output of one control file is the input to another.

Complex control schemes may have several stages of cascaded control or embedded control.

Another aspect that is not dealt with using StaticVariables or Output ports is that in order

to debug a controller, it may be necessary to plot a control variable. In order to do so, the

control variable needs to be written to the output data file and therefore access outside the

user control function needs to be provided. Another type of variable is provided for both

these tasks and these are called VariableStorage. VariableStorage objects have two proper-

ties - they are made available to all control functions that the user defines and they have a

field specifying whether they should be plotted in the output data file. The parameters of a

4.3. SPECIAL VARIABLES IN CONTROL CODE 83

Table 4.5: Descriptor entry for VariableStorage elements

VariableStorage Desired variable name

in control code =

plot variable1

Initial value of

variable = 0.0

Plot variable in

output file = yes

VariableStorage type are listed in Table 4.5. The VariableStorage in the first column shows

the circuit simulator that the variable is of the type of VariableStorage. The second column

is the name of the variable that the user wishes to use in the control code. Since, this is

a stored variable, an initial value is needed to ensure that a random garbage value is not

generated. The last column is the column that asks the user whether the variable should be

written in the output data file so that it can be plotted by the user. If the user says “Yes”

as in the above case, the variable will be written to the output data file while if the user

days “no”, the variable will not be written in the output data file. In either case, a variable

of type VariableStorage, will be made available across all control functions, irrespective of

which control file descriptor contains the definition. On the contrary, once a variable has

been defined in a control file descriptor spreadsheet, a repeat definition in another control file

descriptor spreadsheet is an error and the simulator will abort with an error message.

The method of implementation of VariableStorage is different from other variable types.

Instead of having different dictionaries for each user control function, there is a single dictio-

nary for all the user control files in a simulation. By defining a single dictionary and making

it available to all user control functions, the sharing of data contained by the VariableStorage

elements is possible across all user control functions.

{ ‘ ‘ p l o t v a r i a b l e 1 ’ ’ : [0 . 0 , ‘ ‘ yes ’ ’]}

The above dictionary shows how the VariableStorage element in the example above is defined.

The value of the key is equal to the name of the VariableStorage object while the value is a list

with two elements - the first being the value of the VariableStorage element and the second

being the flag whether the element should be written to the output data file. Fig. 4.5 will

show how VariableStorage elements are used by the simulator. The VariableStorage element

“plot variable1” above could have been defined in the control descriptor spreadsheets of any

one of the control files. However, as shown, it is made available in each user control function

84 CHAPTER 4. INTERFACE FOR USER CONTROL FUNCTIONS

VariableStorage Name = plot variable1 Initial value = 0.0

Plot variable? = Yes

plot variable1 = VarStore[“plot variable1”]

plot variable1 = VarStore[“plot variable1”]

<control1.py code >

<control2.py code >

VarStore[“plot variable1”] = plot variable1

VarStore[“plot variable1”] = plot variable1

contol1 desc.csv

control1.py descriptor

control1 func

control2 func

control.py

control.py

Figure 4.5: Variable storage types in control functions

before the user control code and also extracted from each user control function at the end of

the control code. As can be seen from the block diagram of Fig. 4.5, VariableStorage is as

extremely powerful variable type which is similar to a global variable in other programming

languages. It could provide a great deal of flexibility in control design by allowing exchange

of control variables. However, there is a great potential of data corruption as variables can be

changed in every control function. Therefore, the use of this VariableStorage element should

be limited to writing control variables to the output data file and for connection between

control files. The use of VariableStorage elements as replacements for regular StaticVariables

is not recommended as the risk of data corruption is high. The example provided in Chapter 5

will describe the recommended use.

With respect to these two variable types described above, there is a special property

related to the Python programming language that the user can use. When a variable is

4.4. TIME SCHEDULING CONTROL CODE 85

declared as StaticVariable or VariableStorage, by default it is a floating point number whose

default initial value is 0.0. The user can change this default initial value to any other floating

point number. However, in Python, every variable is an object of a particular type. The object

corresponding to a variable can be changed by initializing it to that type. To elaborate, let

us examine a variable “x”:

x = 0 .0

In Python, a variable does not have to be declared. Therefore, the above statement will

create an object of floating point type and assign that to x. However, if another statement is

written:

x = [0 . 0 , 0 . 0 , 0 . 0]

This will destroy the object of floating point type and create another object of type list and

assign that to x. This facility in Python can be used to create other objects for StaticVari-

ables and VariableStorage. For example, the StaticVariable “curr integ” defined above and

initialized to 0.0 in the control descriptor can be changed by the user within the control code

to:

c u r r i n t e g = [0 . 0 , 0 . 0 , 0 . 0]

By writing the above statement in the control code, the StaticVariable dictionary for the

control function will have the key “curr integ” with the above list as its value rather than the

floating point number. This is a particularly useful concept if control code needs to be written

in matrix form for polyphase systems. The above variable curr integ could now contain the

integrated values of the currents in phase a, phase b, and phase c of a three-phase power

system.

4.4 Time scheduling control code

The previous sections described the input/output structure of control in the simulator and

also the special types of variables that can be used - StaticVariables and VariableStorage. In

this section, time scheduling of control functions will be described. A control function is very

rarely required to execute at the same time step as the simulation. In most cases, the time

step of the control function is much larger than the simulation time step as this is how the

86 CHAPTER 4. INTERFACE FOR USER CONTROL FUNCTIONS

control will be implemented in a microcontroller or microprocessor and for real-time control,

practical values of control frequency need to be chosen. In some cases, the control function

needs to be run at a fixed time step due to the nature of control - for example, in a resonant

converter, the control has to be timed with respect to the resonance of the circuit.

Every control function defined by the user will be provided with the current time instant

of simulation through the construct t clock. This variable can be accessed in every control

algorithm by the user with the simulator updating this variable with the latest time instant of

simulation before the user control code. In order to schedule the control code, the simulator

has a special construct called a TimeEvent. The parameters of a TimeEvent are listed in

Table 4.6. As before, the TimeEvent in the first column tells the simulator these are the

Table 4.6: Descriptor entry for TimeEvent variables

TimeEvent Desired variable name in

control code = t1

First time event = 0.0

parameters of a time event variable. The second column is the desired name in the control

code. The user can use this variable to assign control events at future time instants and this

variable will be stored and used by the simulator to ensure that the control code executes at

that time instant. The third column is the first time event that needs to be scheduled. The

default is the start time 0.0 but can be changed to anything. This time event is typically used

in conjunction with t clock in the manner described below:

i f t c l o ck>t1 :

−−−−−−−−−−−−−−−
Control code

−−−−−−−−−−−−−−−
t1 = t1 + t1 p e r i od

By inserting the control code within a conditional statement that checks if t clock is greater

than the time event t1, it is possible to adjust t1 using t1 period to ensure that the control

code will run only every t1 period. Moreover, t1 period need not be a constant and can be a

variable based on the control code.

A control function can have any number of TimeEvent variables. Every control function

4.4. TIME SCHEDULING CONTROL CODE 87

has its own dictionary that stores the TimeEvent variables defined in the descriptor as follows:

{ ‘ ‘ t1 ’ ’ : 0 . 0 , ‘ ‘ t2 ’ ’ : 0 .0}

It is completely up to the user to generate values for the TimeEvent variables in any way

desired. Since, there is a separate dictionary containing TimeEvent, it is possible to define

identical TimeEvent variables for multiple control functions. However, it is very important

for the user to update every TimeEvent in the control code. Failure to do so will result in

the TimeEvent not changing. As will be described soon, this will cause the control code to

execute at the rate of the fastest among the remaining control functions or the simulation

time step, whichever is faster. Usually, neither of these options are what the user wishes for

the time step of executing control functions. Therefore, it is recommended that the user make

sure that any TimeEvent defined for a control function is updated correctly. The advantage

of defining TimeEvents is that control functions can be executed at any arbitrary time instant

in the simulation. As said before, not only can the time period of control functions be greater

than the simulation time step but they can also be smaller. Before explaining this concept,

the link between the control functions and the simulator will be described.

The question is how are the simulator circuit analysis blocks - loop analysis and nodal

analysis - linked to the control functions? In the absence of control functions, the circuit

analysis blocks would run at the simulation time step. When the simulation contains control

functions, the circuit analysis blocks will run either at the simulation time step or when a

control function generates an “event”. A control function generates an event when any of its

output ports changes. There is no threshold for change, if the value of the output port in the

current execution of the control function differs from the value before the execution, an event

is generated. When an event is generated by one of more control functions, the circuit analysis

blocks are executed. To elaborate on how this is co-ordinated, let us consider the following

example in Fig. 4.6. In this example, the simulation has three control files. In this section,

the details of the control files are not important. The emphasis is on the time scheduling

of these control functions. As shown, the first control function is called Reference Voltage

Loop. This is the outermost control loop and is a slow control loop that has a time period

of 1 millisecond. The second loop is the Voltage Control Loop which is a faster inner control

loop with a time period of 100 microseconds. The third and the innermost control loop is

the Pulse Width Modulator which has a time period of 100 nanoseconds. The simulation

88 CHAPTER 4. INTERFACE FOR USER CONTROL FUNCTIONS

VoltageVoltage

Reference

LoopLoop

Control

Pulse

Width

Modulator

1 ms 100 µs 100 ns

Converter

Figure 4.6: Nested control to describe timing

time step has been chosen to be 5 microseconds. This is a typical control layout for many

power electronics simulations - 1 to 5 microseconds is a reasonably small time step for a power

converter switched between 1 to 10 kHz. The voltage control can be at a time period much

higher than the simulation time step. However, the Pulse Width Modulator is a hardware

implementation detail. This is achieved using specialized hardware on microcontrollers or

can be achieved using analog comparators. In either case, the resolution of the Pulse Width

Modulator is very high and therefore the time period of this control block may have to reflect

a hardware detail. For a 10 kHz converter, the switching time period is 100 microseconds, for

which the Pulse Width Modulator time period of 100 nanoseconds results in 1000 samples in

a switching period. In most cases, this results in sufficient accuracy for generating switching

signals. The time period can be reduced further if the converter is a resonant converter or if

the switching frequency can be higher.

The significance of the above example is that there are now four different time periods in

the simulation - three from control functions and the fourth from the simulation time step. The

time periods mentioned are just examples and can change. However, it is important to note

that there are control time periods that are greater than the simulation time step and control

time periods that are smaller than the simulation time step. To begin with, each of the control

functions can be called Volref.py, Volcon.py and Pwm.py. Therefore, there are descriptors for

each control function - Volref desc.csv, Volcon desc.csv and Pwm desc.csv. The TimeEvent

parameters in each control descriptor spreadsheet are provided separately in Tables 4.7, 4.8

and 4.9. The TimeEvent variables could have been declared to be the same as TimeEvents

are local to a control function and are not global like the VariableStorage variables. However,

for clarity in examining the time scheduling of these control functions, distinct variables are

chosen. Each control function will have a separate TimeEvents dictionary:

4.4. TIME SCHEDULING CONTROL CODE 89

Table 4.7: TimeEvent in Volref desc.csv

TimeEvent Desired variable name in

control code = tvolref

First time event = 0.0

Table 4.8: TimeEvent in Volcon desc.csv

TimeEvent Desired variable name in

control code = tvolcon

First time event = 0.0

Table 4.9: TimeEvent in pwm desc.csv

TimeEvent Desired variable name in

control code = tpwm

First time event = 0.0

{ ‘ ‘ t v o l r e f ’ ’ : 0 .0}
{ ‘ ‘ tvo lcon ’ ’ : 0 .0}
{ ‘ ‘ tpwm ’ ’ : 0 .0}

Let us assume that the control files will update their TimeEvent variables according to the

time periods discussed before. Therefore, the following statements will be present in the

respective control files,

Vo l r e f . py : t v o l r e f = t v o l r e f + 0.001

Volcon . py : tvo lcon = tvolcon + 100.0 e−6

Pwm. py : tpwm = tpwm + 100.0 e−9

Refer to the conditional statement shown above where the time event was compared with

the time instant of simulation t clock, to know how the TimeEvent update takes place and

control code can be executed once within the time period.

With the above background, let us examine the process of scheduling. The simulation

creates a list called TimeVector. Let us start from a random time instant when the simulation

execution runs completely. This implies circuit analysis - loop and nodal analysis as well as

execution of all control functions. At this point of time how does the simulation proceed?

When a control function is evaluated, it may so happen that the control code is not executed

90 CHAPTER 4. INTERFACE FOR USER CONTROL FUNCTIONS

due to time instant of simulation t clock being less than the TimeEvent for that control

function. For example, let us say that the current time instant of simulation t clock is 80

microseconds while Volref.py has a TimeEvent of 1 millisecond. Since, t clock<tvolref, the

control code in Volref.py will not execute and execution will only take place when t clock is

1 millisecond. Evaluation of all control functions, will result in values of their TimeEvents

remaining unchanged or updated to new values according to their time periods. These values

of TimeEvents are added to the TimeVector list. Therefore, after evaluating all the control

functions, TimeVector will be:

TimeVector = [t v o l r e f , tvolcon , tpwm]

The list contains the values of the TimeEvents. To this list is now added the simulation time

instant which we called tode - meaning time instant of the Ordinary Differential Equation

solver. So, TimeVector is:

TimeVector = [t v o l r e f , tvolcon , tpwm, tode]

The above list is arranged in ascending order such that the smallest time value is the first

element. This smallest value will now be the next instant of evaluation.

The word “evaluation” has been used instead of “execution” This is because the simulation

now checks for another status. Did any of the control functions generate an event? As

described before, a control function is said to generate an event when one or more of its

outputs changes. There are no minimum or maximum requirements for a change in the

output. Any change in the output, however small or large will trigger an event. If one

or more control functions generate an event, the simulator will now go through the entire

simulation cycle - loop and nodal analysis as well as control functions. This is because when

a control function generates an event, this means an output has changed which in turn causes

a change in the circuit and therefore the circuit needs to be solved again completely. To

compare this with the other possibility, what happens when no control function generates

an event because no control function experiences any change in any of its outputs? In this

case, the simulator will only evaluate the control functions at the next time instant which is

the smallest time instant in TimeVector. The following example will describe the difference

between simulation evaluation and simulation execution. Let us consider the time instant of

simulation marked as t in Fig. 4.7. As is evident, this time instant was chosen because tpwm

4.4. TIME SCHEDULING CONTROL CODE 91

tvolcon tpwm tpwm+

100ns

tvolcon+

100µs

tvolref

t

Figure 4.7: Timing diagram of control functions

was the smallest in TimeVector. TimeVector can be:

TimeVector = [tpwm, tvo lcon +100.0 e−6, t v o l r e f]

Let us neglect the time instant from the simulation time step to focus on the effect of control

functions. Let us suppose that at the instant t shown, none of the control functions generated

an event. Only Pwm.py updated its TimeEvent from tpwm to tpwm+100.0e-9. The remaining

TimeEvents in the other two control functions are the same and are shown in the figure. So

TimeVector is:

TimeVector = [tpwm+100.0 e−9, tvo lcon +100.0 e−6, t v o l r e f]

Since, none of the control functions has generated an event, there is no point in running the

circuit analysis. There has been no change in the circuit and the time difference between the

tpwm and tpwm+100.0e-9 is 100 nanoseconds. This is much less than 5 microseconds which

is the simulation time step. The simulation time step is chosen with respect to stability

of the simulation. As will be described in Chapter 7, if the simulation time step is not

small enough as compared to the time constant of the branches in the circuit, the simulation

can become unstable. However, when the simulation updates the time instant from tpwm

to tpwm+100.0e-9, the simulation is checking for control events that change the state of the

circuit. Simulating at a potential time step of 100 nanoseconds when 5 microseconds has been

found to be sufficient will increase the computational burden of the simulator significantly and

slow it down. Therefore, if no event has been generated at t=tpwm, at the next time instant

t=tpwm+100.0e-9, it is only necessary to evaluate the control functions. The simulator will

evaluate all control functions, however, by using the conditional time check shown above, only

92 CHAPTER 4. INTERFACE FOR USER CONTROL FUNCTIONS

Pwm.py will be evaluated. Any control function may generate an event in any time instant

of simulation or it may so happen that no control function may generate an event at all for

a number of these time instant updates.

Let us examine two possibilities. The first, suppose Pwm.py generates an event. This

could be a change in one of its outputs which may be the switching signal to the converter

- turning on or off a switch. When an event occurs, the state of the circuit has changed. In

this case, the resistance of a branch has changed and in this particular case, the resistance of

a branch can change by a huge order - a few milliohms to several megaohms. For accurate

simulation that resembles hardware, it is essential that the simulator now execute all the

circuit analysis functions and update the currents and voltages and all other variables in

component objects in the circuit. As before, all control functions are also executed and

TimeVector is updated. The next time instant of simulation will be the smallest element of

TimeVector. The second possibility is that the smallest time instant may be generated by

Volcon.py i.e tvolcon shown in the figure above. As an example, let us assume in this case

that Volcon.py does not produce an Output but only generates the duty cycle or modulation

signal for the pulse width modulator. Therefore, Volcon.py does not affect a circuit component

directly in the way Pwm.py does though it affects another control function which is Pwm.py.

The duty cycle generated by Volcon.py is of the type VariableStorage as the duty cycle has

to be accessed in Pwm.py. Details of the control will be provided in the next section. A

change in one or more variables of the type VariableStorage will not generate an event in the

simulator. This is because VariableStorage is used for interfacing between control functions

and for writing control variables to the output data file. VariableStorage types will not

directly impact the state of the circuit the way Output types do. Therefore, if tvolcon is the

smallest in TimeVector, it is ensured that the simulator will evaluate the control function

at that particular time instant. However, circuit analysis will not be performed without an

event being generated.

In the above description, the time step of the simulator was left out to focus on the effect

of TimeEvents generated by the control functions. However, even in the presence of control

functions, the time step of the simulator can decide the next time instant of simulation. As

stated before, the time instant of simulation is always added to TimeVector.

TimeVector = [tpwm, tvo lcon +100.0 e−6, t v o l r e f , tode]

4.5. INTERFACING CONTROL CODE 93

The smallest time instant in TimeVector will be the next simulation time instant. In case

tode is the smallest, the simulator will execute the entire cycle even if no event is generated by

a control function. This is for two reasons. In case there are no control functions, TimeVector

will only contain tode and therefore, the time step of simulation alone will decide the next

instant of simulation. Therefore, the simulator must execute all circuit analysis functions as

this will be a case of a fixed time step circuit simulation which is quite often the case when

simulating passive circuits. The second reason is that when tode is the smallest time instant

in TimeVector even when control functions are present, it may be possible that the control

functions have significantly larger time periods than the simulation time step. In this case,

the simulator must execute all circuit analysis functions when tode is found to be the smallest

as failure to do will result in the simulation being unstable. As stated below a simulation at

every simulation time step is a necessity for stable simulation - that is how the simulation time

step is chosen. However, when tode is found to be the smallest time instant in TimeVector,

it is necessary to update tode with the simulation time step. So,

tode = tode + dtode

Where dtode is the simulation time step specified by the user in circuit inputs.csv.

4.5 Interfacing control code

The previous section described how the control functions are scheduled and how the circuit

simulator interfaces the control functions with the circuit analysis functions. However, the

control functions shown in the previous example were treated as black boxes with an emphasis

only on how the TimeEvents are generated. In this section, it will be described how the control

functions are interfaced. Detailed control algorithms will not be presented. The focus will be

on showing cascaded control can be designed with the circuit simulator.

Let us start with the design from the inner most control function to the outermost. There-

fore, first Pwm.py. The parameters in Pwm desc.csv will be as listed in Table 4.10. Let us

assume there is only one Switch called S1 in the converter - for example, a simple buck

converter. This Switch S1 has a control tag named as S1 gate in the circuit parameters

spreadsheet. This control tag is accessed by S1 gate in Pwm.py. Since, a pulse width modu-

lator is being programmed, a carrier wave will need to be generated. A StaticVariable called

94 CHAPTER 4. INTERFACE FOR USER CONTROL FUNCTIONS

carr signal is defined for this purpose. The duty cycle will be the output of the controller

which regulates the voltage of the buck converter and this code is found in Volcon.py. The

duty cycle is defined as a VariableStorage type as it is an input from another control func-

tion. This could have been defined in the descriptor spreadsheet of Volcon.py but let us define

all the variables of Pwm.py first. Lastly, the TimeEvent tpwm as already described in the

previous section.

The code in Pwm.py will be similar to this without going into the details:

i f t c l o ck>tpwm:

c a r r s i g n a l += (1/5000)∗100 .0 e−9

i f (c a r r s i g n a l >1):

c a r r s i g n a l = 0

i f (duty cyc le>c a r r s i g n a l) :

S1 gate = 1

else :

S1 gate = 0

tpwm += 100.0 e−9

A brief description of the code is as follows. The block of code executes only when the time

instant of simulation t clock is greater than TimeEvent tpwm. The carrier waveform is a saw

tooth waveform of unity magnitude and of frequency 5 kHz as shown in the previous section.

Therefore, (1/5000) is the slope of the waveform. This needs to be multiplied by the time

period of the modulator i.e. 100 nanoseconds and finally needs to be limited to unity. The

next step is the comparison between the duty cyle and the carr signal and this generates the

output S1 gate which is connected by the simulator to the control tag S1 gate of Switch S1.

Finally, the TimeEvent tpwm is updated by 100 nanoseconds. A few things to note. The

input is duty cycle. Since this variable is of type VariableStorage, it can be accessed in any

control function. The next control function will describe how this duty cycle is produced.

The carr signal variable is a StaticVariable and therefore it can be directly accessed within

Pwm.py and is updated by a += since the stored value is made available in the function

by the simulator. Similarly, the updated value is extracted by the simulator and stored in a

dictionary for the next iteration.

Now, the next level of control - Volcon.py. This function contains the controller which we

4.5. INTERFACING CONTROL CODE 95

Table 4.10: Pwm desc.csv

Output Element name in

circuit spread-

sheet = Switch S1

Control tag de-

fined in param-

eters spreadsheet

= S1 gate

Desired variable

name in control

code = S1 gate

Initial out-

put value =

0

StaticVari-

able

Desired vari-

able name in

control code =

carr signal

Initial value of

variable = 0.0

TimeEvent Desired variable

name in control

code = tpwm

First time event

= 0.0

Variable-

Storage

Desired variable

name in control

code = duty cycle

Initial value of

variable = 0.0

Plot variable in

output file = yes

have chosen to be a Proportional Integral (PI) controller. This control generates the duty cyle

variable used in Pwm.py. The parameters in Volcon desc.csv are listed in Table. 4.11.

i f t c l o ck>tvo lcon :

v o l t e r r o r = v o l t r e f − vo l t ou tpu t

v o l t i n t e g r a l += v o l t e r r o r ∗100.0 e−6

duty cyc l e = 0.001∗ v o l t e r r o r + 0.01∗ v o l t i n t e g r a l

i f duty cyc l e > 0 . 9 8 :

du ty cyc l e = 0.98

tvo lcon += 100.0 e−6

The purpose of the control is to regulate the output voltage to the reference voltage volt ref.

This reference voltage is generated by the outer control Volref.py and described next. 0.001 is

the proportional gain while 0.01 is the integral gain. These values are purely arbitrary and just

examples to show how to write control code. This control function contains the PI controller

which regulates the output voltage and therefore takes the measured voltage as an Input. It

96 CHAPTER 4. INTERFACE FOR USER CONTROL FUNCTIONS

Table 4.11: Volcon desc.csv

Input Element name in cir-

cuit spreadsheet = Volt-

meter Voutput

Desired variable name

in control code =

volt output

StaticVari-

able

Desired variable name

in control code =

volt error

Initial value of variable

= 0.0

StaticVari-

able

Desired variable name

in control code =

volt integral

Initial value of variable

= 0.0

TimeEvent Desired variable name

in control code = tvol-

con

First time event = 0.0

Variable-

Storage

Desired variable name

in control code =

volt ref

Initial value of variable

= 0.0

Plot variable in

output file = yes

is assumed that the circuit schematic contains a Voltmeter called Voltmeter Voutput. The

measured voltage is made available in the control function by the simulator as the variable

volt output. The error in the voltage and the integral of the error are defined as StaticVari-

ables. The variable volt error does not have to be defined as StaticVariable as it is calculated

within the control code and used immediately. However, it is a safe practice to define as many

variables as StaticVariables rather than using the default Python objects to ensure control can

be tracked. To elaborate on this, if volt error was not a StaticVariable, it would not exist if

the code block was not executed. Therefore, if for control debugging, the variable is accessed

outside this block, the simulator would exit with an error as it is accessing a variable which

does not exist. However, when a variable is defined as a StaticVariable, it always has a value

even if that value is the initial value specified in the descriptor spreadsheet. The duty cycle

is generated according to PI control. As mentioned before, the duty cycle is made available

in all control functions once it has been defined in one of them - in this case Pwm desc.csv.

Also, duty cycle does not have to be defined as it is already defined in Pwm desc.csv and to

4.6. CONCLUSIONS 97

redefine it is a violation for which the simulator will abort with an error.

Finally, the outermost control function Volref.py. This function will generate the voltage

reference for the previous control function Volcon.py. Volcon desc.py contained the definition

of volt ref as VariableStorage. The parameters in Volref desc.csv are listed in Table. 4.12.

i f t c l o ck>t v o l r e f :

v o l t r e f += 0.01

i f v o l t r e f>v o l t s e t p o i n t :

v o l t r e f = v o l t s e t p o i n t

t v o l r e f += 0.001

Table 4.12: Volref desc.csv

StaticVari-

able

Desired variable name

in control code =

volt setpoint

Initial value of variable

= 100.0

TimeEvent Desired variable name

in control code = tvol-

ref

First time event = 0.0

This control function generates the reference voltage to be used by Volcon.py as a gradual

ramp which is clamped at volt setpoint. volt setpoint is defined a StaticVariable with the

initial value as 100. Therefore, Volref.py ensures that buck converter starts up gradually with

a steadily increasing reference voltage.

This section has described how three control functions in a simulation can be interfaced

with VariableStorage and how these variables can be accessed in each control function. It

should be noted that VariableStorage can be defined in any control function descriptor. This

example was fairly simple and the purpose was to provide an introduction to writing control

functions. A far more elaborate example will be provided in the next chapter.

4.6 Conclusions

Since this circuit simulator is targeted towards power electronics applications particularly

with multiple converters, user-defined control functions are an extremely critical component.

98 CHAPTER 4. INTERFACE FOR USER CONTROL FUNCTIONS

It is extremely important that a user be able to integrate control into a simulation with the

same ease as in a commercial simulator. This circuit simulator allows a user to define multiple

control functions with no limits on the number of files. By providing the facility of Static-

Variables, the user can implement higher order control functions with complex mathematical

calculations. In order to develop control in a modular manner, the VariableStorage type

has been provided for the user to be able to break up their control algorithms into modules

and interface those modules. The only visible disadvantage is that all the control functions

have to be developed with code unlike a commercial software where control functions can be

developed by connecting blocks from an in-built library. However, for most complex circuits

that are intended for hardware implementation, control functions are developed as code to

be programmed in microcontrollers or other forms of embedded controllers.

In a complex circuit with multiple converters, control algorithms can be fairly complex.

One of the major challenges with control functions is the time of execution. As an example,

in hardware, a control function may be an interrupt service routine connected to a timer.

The timer may be configured to generate an interrupt at a constant time period or the time

period may be calculated and loaded into the timer after every iteration. The interrupt service

routine ensures that the control function will be executed at the desired time instant. For the

simulation to match the hardware implementation, it is essential that the simulator provides

a guarantee that every control function will execute at the exact time instant that is desired.

Moreover, a user should not have to adjust the simulation time step in order to ensure that

it matches the control function time step. In this circuit simulator, a time scheduler ensures

that all control functions are evaluated at the desired time instant by providing the variable

TimeEvent. The user can specify a TimeEvent for every control function and update this

TimeEvent with any time period that are not necessarily multiples of each other or even

multiples of the simulation time step. In this manner, the simulator provides accurate time

resolution comparable to hardware implementation in a form that is convenient to the user.

This chapter and the previous chapter have described two aspects of the user interface.

The first being how the circuit is represented and how the parameters of the circuit com-

ponents are updated. The second being how control functions are implemented. Chapter 5

will describe in detail how a circuit can be simulated. Moreover, Chapter 5 will provide the

user with an example on how a circuit can be developed in stages and how control can be

4.6. CONCLUSIONS 99

developed and tested in a modular manner. The circuit chosen in Chapter 5 is such that all

the functions available with the simulator are used in simulating it. Chapter 5 will show how

the interface provided in this circuit simulator is sufficient to design fairly complicated power

electronic circuits. Moreover, writing control functions with the user interface described in

this chapter provides a powerful platform which is also simple to use at the same time. The

reader is encouraged to switch between Chapter 3, Chapter 4 and Chapter 5 while reading

Chapter 5.

